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A Simple Method to Calculate Mode Components of Strain Energy 
Release Rate of Free-Edge Delaminations in Composite Laminates 

In Kweon  Kim* 
(Received October 27, 1997) 

A simple method, which calculates the mode components of the strain energy release rate of 

free-edge delaminations in the laminates, is proposed. The interlaminar stresses are evaluated as 

art interface moment and interface shear forces that are obtained from the equilibrium equations 

at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is 

calculated by using a generalized quasi-three dimensional classical lamination theory developed 

by the author. The analysis provides closed-form expressions for the three components of the 

strain energy release rate. The analyses are performed on ! + 3 0 / - 3 0 / 9 0 ~ s  laminates subjected 

to uniaxial extension, with free edge delaminations located symmetrically and asymmetrically 

with respect to the laminate midplane. Comparison of the results with a finite element solution 

using the virtual crack closure technique shows good agreement. The simple nature of this 

method makes it suitable for primary design analysis ['or the delaminations of composite 

laminates. 

Key Words : Generalized Quasi-Three Dimensional Classical Lamination Theory(GQ3D 

- C L T ) ,  Free-Edge Delamination, Stranin Energy Release Rate, Composite 

Laminates 

1. Introduction 

Delaminations along the free-edges of compos- 

ite laminates under uniform axial strain as shown 

in Fig. 1 have been observed during testing and in 

service. The free-edge delaminations induce redis- 

tribulion of the stresses in the plies of the la- 

minate, and therefore, usually resuh in a reduc- 

tion of stiffness and strength of the laminate. A 

number of experimental and analytical investiga- 

tions have been directed toward well understand- 

ing of free-edge delamination mechanisms. 

Pipes and Pagano(1970) proposed a quasi 

-three dimensional (Q3D) analysis for a symmet- 

ric laminate under uniform axial extension. They 

showed the interlaminar stress distribution by the 

finite difference technique based on the Q3D 

analysis, and pointed out that free-edge delamina- 

tions are caused by the interlaminar stresses 

which arise in the vicinity of the free-edge. 

Rybicki, Schmueser and Fox(1977) and Wang 

and Crossman (1980) evaluated the strain energy 

release rate (SERR) by using a finite element 

method (FEM) with the virtual crack closure 

technique. These previous works have shown that 

the delamination onset and growth can be char- 

acterized quantitatively by the SERR. In order to 

estimate the SERR, O'Brien(1982) developed a 

simple expression based on the classical laminat- 

ed plate theory (CLT) and the rule of mixtures. 

Fig. 1 A laminate with free-edge delaminations and 
* Dept. of Mechanical Design Eng., Chosun Univ. coordinate system. 
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Aoki and Kondo(1989) proposed a method 

based on the J-integral law in combination with 

the CLT for calculating the Modem component 

o fSERR.  Armanios and Rehfield(1989) used a 

sublaminate analysis with a shear deformable 

plate: theory to determine the individual mode 

components of SERR. Schapery and Davidson 

(1990) proposed a crack tip element approach, 

which is a method that combined a sublaminate 

analysis based on the CLT with FEM, for deter- 

mining mode ratio of SERR. 

The objective of the present work is to develop 

a simple method for determining the individual 

mode components of SERR. The method is based 

on the GQ3D-CLT. The analysis provides closed 

-form expressions for the Mode-l, Mode-ll ,  and 

Mode III component of SERR. 

2. Formulation 

2.1 Eva luat ion  of  in ter laminar  s tresses  

Classical laminated plate theory (CLT)  

assumes that the state of stress within each lamina 

of a multidirectional laminate is planar. This 

assumption is accurate for inner regions away 

from laminate geometric discontinuities, such as 

flee-edge. In the vicinity of the free-edge a 

boundary exist where the state of stress is three 

dimensional. The boundary width is approxi- 

mately equal to the overall laminate thickness 

(Pipes and Pagano, 1970). The stresses which 

arise at the interface between adjacent layers in 

the boundary are called interlaminar stresses. A 

lot of studies have been conducted to analyze the 

distribution of the interlaminar stresses. In this 

paper, we evaluate indirectly the interlaminar 

stresses as stress resultants instead of calculating 

the interlaminar stress distribution. CLT gives the 

in-plane stresses, o'y and z%. shown in Fig. 2. 

These in plane stresses vanish at the free-edge 

of the laminate. By using equilibrium equations 

of stress resultants at the interface z : z ~  in the 

boundary, we define an interface moment 

(Halpin, 1984) re(z,.) and interlhce shear forces 

qy(Zi) and qx(Z~) as follows : 

~i 
h / 2 

re(z, .)-  ~ ( z )  (z z,.)d~ 

~i 
h ,'2 

qy(Z3 = -  ~,,(z)dz (1) 

qx (Zi) = -- ~z,h~27fxy (,~) dZ 

The interface moment ~z(z,.) is reacted by the 

interlaminar normal stress component a~. The 

distribution of the interlaminar normal stress 

must, therefore, result in zero vertical force vector 

while producing a moment equal in magnitude to 

that given by the first equation of Eqs. (I). When 

tile interface moment is positive, the interlaminar 

normal stress az is tensile in the boundary near 

the flee-edge. It means that a peeling stress occurs 

at the interface in the free-edge boundary and 

delamination crack with the opening mode 

( M o d e - ] )  may be generated. 

The interface shear forces, qy(Zi) and qx(z~), 
are reacted by the interlaminar shear stress com- 

ponents ry~ and z~, respectively. When the inter- 

face shear force is not zero, the interlaminar shear 

stress occurs at the interface in the flee-edge 

boundary. In the case of qy(z~) ~=0, delamination 

crack with the in-plane shear mode (Mode-[1 ) 

may be generated. In the case of qx(z~)-~0, 

Fig. 2 Definition of  interface moment and interface 
shear forces. Fig. 3 Quasi-three dimensional problem. 
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delamination crack with the anti plane shear 

mode (Mode $ )  may be generated. 

2.2 Generalized quasi-three dimensional 
classical laminated plate theory 

Pipes and Pagano(1970) proposed the follow- 

ing quasi-three dimensional (Q3D) displacement 

field equations for symmetric laminates under 

uniform axial strain as shown in Fig. 3. 

u (x, y, z ) =  U(y ,  z)+CoX 
v (x, y, z ) =  V (y, z) (2) 

w (x, y, z ) -  W ( y ,  z) 

where e0 is uniform axial strain. These Q3D 

displacement field equations, however, are not 

applicable to asymmetric laminates. Hence we 

derived the following displacement field equa- 

tions for asymmetric laminates. 

u ( x ,  y, z) U(y ,  z )+(C~+C,~z )x  

v(x, y, e l =  V(y ,  z ) + C 3 z x  (3) 
1 

w (x, y, z) W (y, z) - (TC,~x + Cay) x 

We called Eqs. (3) as generalized quasi three 

dimensional (GQ3D) displacement field equa- 

tions. While the parameter C~ is equivalent to s0, 

which describes uniform axial strain of a lami- 

nate, the GQ3D equations include additional 

parameters C2, C3, and C4" C2 and C4 represent 

bending deformations of a laminate, and C3 repre- 

sents twisting deformation of a laminate. 

We derive a GQ3D CLT by applying the 

GQ3D displacement field Eqs. (3) to CLT. CLT 

gives the in-plane strain components of a lami- 

nate as follows : 

~x cO@~,Xx, Cy:~O~-ZXy ,  ~x3,=~'Oy@ZXxy (4) 

where 

o c~z~ ~ o_ oqv ~ o c~zt ~ ~v ~ 

G~2 Z~)I) ~2//O0 G~2 ~)0 
XX 3X 2 , X y :  3yO ' .~Xy 2 3x@ (5) 

zt ~ v ~ and w ~ are displacements at the midplane 

of the laminate. On the other hand, we get the 

following x-direction strain by the use of the 

GQ3D displacement field Eqs. (3). 

c?u 
Ex ()X : CL + C4y + C2z (6) 

Comparing Eq. (6) with Eq. (4), we obtain the 

following relations. 

C~+ C4y=e~ C2=xx (7) 

We consider the laminate under uniform axial 

c0. Therefore, 

C~=co (8) 

Introducing the curvature wx with respect to 

the in-plane bending moment, we get the follow- 

ing equation. 

C4 = Wx (9) 

Substituting the GQ3D displacement field Eqs. 

(3) to the last equation of Eqs. (5), we obtain 

C:~ = xxy (10) 

We can find that the GQ3D displacement field 

Eqs. (3) are applicable to analyze a laminate 

under the bending deformations, Xx and wx, and 

the twisting deformation Xxy, in addition to axial 

extension Co, as shown in Fig. 4. 

CLT defines the resultant forces and moments 

as follows : 

[ Nxyl [ Yxyl Zxyj 

where z~ and zz are coordinates of the yz  section. 

GQ3D CLT, however, treats the resultant forces 

Fig. 4 Generalized quasi three dimensional 
problem. 

Fig. 5 Resultant forces and moments acting on a 
laminate with finite width. 
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and moments shown in Fig. 5. CLT does not 

include a resultant moment ~ corresponding to 

the curvature w~. In addition, CLT defines Eqs. 

(11) as forces and moments per unit width of the 

yz section because of the infinite plate assumption 

of CLT. Hence we employ the following defini- 

tions for the resultant forces and moments acting 

on the laminate with finite width (yz-y~) as 

shown in Fig. 5. 

L 

The stress-strain relations for the k th layer of a 

multilayered laminate can be written as 

d , [  1012 Q22 Q26 e,  (13) 

Substituting Eq. (13) to Eqs. (12), we can 

derive the following constitutive equation for the 

GQ3D-CLT.  

E, 
Nxy 

M~i'= 

- A .  A12 Al~ B .  Bl2 Bl6 Cll- 

AI2 A22 A~G Bl~ B22 B26 C,2 
A1. A26 A66 B16 B'~,; t~66 C,~ 
Bu B12 /31~ D .  D~2 DI~ E .  
B12 B22 B26 DI2 D2~ D2~ E ~  

Bi6 /326 B~ D~ D26 D66 El6 

C .  C12 Ct~ E .  E ~  E ~  Fl~ 

where 

[Aij, Bu, D~i]- - (y~--yl )  ~, (~)U)k[(Zk 
k = 1 

1 , 2  2 , 1 

1 2 2 
k=l 

eO 

Xx 

Xy 

Xx'_ 

(14) 

Fig. 6 Sublaminate description. 

1 2 2 --Zk- O, T(Zk--Z~-l) 

k=l 
(15) 

2.3 A n a l y s i s  o f  a l a m i n a t e  w i th  a f r e e - e d g e  

d e l a m i n a t i o n s  by G Q 3 D - C L T  

We consider a laminate with a free-edge 

delamination under uniform axial strain. The 

laminate is divided into three sublaminates as 

shown in Fig. 6. 

The delamination length is denoted by a. Sub- 

laminate 2 and 3 represent the groups of plies 

below and above interface along which delamina- 

tion occurs, respectively. Because the forces, Ny 

and Nxy, and the moment, My, are not reacted on 

the laminate under unitbrm axial strain, the fol- 

lowing conditions should be satisfied for each 

sublaminate. 

A~) = N~"y)= M y  ) 0 (16) 

where superscript (g) denotes the {-th sub- 

laminate. Hence we get the following reduced 

constitutive equations for the {-th sublaminate. 

_~"~ =/~") (2") (I 7) 
where 

- - M x -  ~(s / B ' l l  D ' l l  D'16 E' . I  
, H =IB%I I D'la D"66 

[ T x j  l_C ' l l  E ' l l  E"16 F " l l J  

[ e01") 

Vectors ~(t), ~(zl, and ~(3), which describe defor- 

mation of each sublaminate, can be proved to be 

equal since the displacements of each sublaminate 

are 1he same at the interface between the adjacent 
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sublaminates. In addition, it is clear that the force 

and the moments reacted on the whole laminate 

are equal to the sums of the corresponding force 

and moments on each sublaminate. Hence we 

obtain the following reduced constitutive equa- 

tions for the whole laminate. 

NLAM = t~LAM cLAM (19) 

where 

t7t LAM = tiP')+ t7I (2) + f t  (a' (20) 

Superscript L A M  denotes the whole laminate. 

We can obtain deformation of each sub- 

laminate by solving the constitutive Eq. (19). 

Substituting 0 (~), 0(2< and 0 (a) to Eq. (17) and 

using Eq. (16), we can obtain strains and curva- 

ture, c~ (e), 7(.9 and x~(f ) of each sublaminate from 

Eq. (14) written in terms ofthe g-th sublaminate. 

2.4 T h e  s i m p l e  m e t h o d  o f  s t r a i n  e n e r g y  

re l ease  rate  of  a f r e e - e d g e  d e l a m i n a t i o n s  

We can obtain the strain energy release per unit 

length of the laminate by the onset of a delamina- 

tion crack of length a as follows : 

I INLA~V t LAM~MLA M LAM U ( a ) = T ~  ~ Co x x~ 

LAM LAM TLAM LAM, (21) +M)~5 x~y + ~ COx 

We obtain the following equation for the total 

strain energy release rate under the constant 

displacement condition. 

U ( a +  Zla) - U (a) (22) 
G (a) = A a  

where Z/a is a virtual crack propagation length. 

As we mentioned in section 2. 1, a peeling stress 

occurs at the interface z = z ~  in the free-edge 

boundary when the interface moment re(z , )  is 

positive. If a delamination crack of length a with 

the opening mode (Mode 1) is generated, we 

can calculate the opening angle of the crack by 

[x~. a) x~2)]a, where x], a) and ,,c~, 2) represent the 

curvature of sublaminates above and below the 

interface z = z i  along which delamination occurs, 

respectively. We get the Mode- I strain energy 

release by the onset of the delamination crack by 

as follows: 

1 
Ut(a)  2 -m(z , )E-x~a)+x~2)]a  (23) 

We can obtain the inplane sliding displacement 
of the crack by F 0(3) 0(2)1 Leu --cy j a and the anti plane 

tearing displacement of the crack by [7~ a) yoc2)] 

a, as well. Using the interface shear force qy(zi)  

and qx(z i ) ,  we get the Mode-I[ and Mode U[ 

strain energy release due to the onset of the 

delamination crack by the following equations, 

respectively. 

1 s~162 a Uu (a) = 2 q y  (zi) [e~, ~a~- (24) 

1 f~ 0 (3)_ U,,(a) Tqx(z l )  ~x,, r%(2)]a 

We can therefore, calculate the Mode- I ,  Mode 

ll, and Mode- Ill components of SERR for the 

free-edge delamination of length by the following 

equations, respectively. 

1 _ x~s) + G~(a) = d , ( a ) / a = ~ m ( z i )  [ X(y 2)] 

1 [co(a) Co(2)1 Gu(a) = U . ( a ) / a = ~ q ~ ( z ~ )  - (25) 

1 ~,Oy(2) ] Gin(a) = Um(a)  / a=7-qx ( z , . )  [ ),yO (a)_ 

3. Numerical  Examples and 
Discussion 

The proposed method is applied to determine 

the mode components of SERR for free-edge 

delaminations in the [ + 3 0 / - 3 0 / 9 0 1 s  composite 

laminate under uniform axial extension. The 

material property and the geometry of the lami- 

nate are given in Table 1. 

Free-edge delaminations exist at the interfaces 

which are symmetrically located with respect to 

the z 0 plane(midplane) and the y = 0  plane as 

shown in Fig. 1. Because of symmetries, only one 

quarter of the x = 0  section was analyzed. We 

utilized a GQ3D FEM(Uda et al., 1995) with the 

virtual crack closure technique to evaluate the 

accuracy of the present simple method. The FEM 

code uses eight-node quadrilateral isoparametric 

elements. 

Most analyses to obtain the SERR for compos- 

ite laminates with delamination assume that indi- 

vidual plies or ply groups may be modeled as 
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Table 1 

(a) Symmetric delaminations of ~ + 30/ -- 30/90] ~ (b) Asymmetric delaminations of 
laminate [ + 30/-- 30/90], laminate 
Fig. 7 Geometry and coordinate system of analyzed composite laminate. 

Material properties and geometry of the 

laminate. 

EL-- 138.6 GPa E~.=: I0.07 GPa 

GL7--~4.117 GPa (;rr--3.873 GPa 

ULT =0.3200 Urr =0.3000 

b(Semi width) = 15 mm 

h (Laminate thickness) =6ho =0.84 mm 

h0(Ply thickness)=0.14 mm 

L denotes the fiber direction and T denotes the 

transverse direction. 

homogeneous and orthotropic. When this 

assumption is adopted and the delamination is 

between plies at dissimilar angles, a linear elastic 

analysis cannot define time individual SERR com- 

ponents uniquely, because of a near--field oscil- 

latory singularity. (Raju et al., 1988) Raju, Crews 

and Aminpour(1988)analyzed the individual 

SERR components by the finite element model 

with a thin resin layer at the delamination inter- 

face to eliminate the oscillatory singularity. They 

showed that the finite element model with the ' 

bare" interface, where the resin layer does not 

exist, is a very good approximation to the case 

with the interface resin layer, when the virtual 

crack propagation length z/a is either 0.25 or 0.5 

of the ply thickness h.. Hence we took zla/h,--O. 

36 in gEM. 

We analyzed three cases, that is (1) I_+ 30/ 

--30/90]~ laminate with delaminations at the 90/ 

90 interface and (2) [ +- 30/ - 30/90] ., laminate 

with delaminations at the -~ 30/---30 interfaces 

and (3) [+30/ - -30 /90]~  laminate with asym- 

metric delaminations at the --30/90 interface. 

3.1 [ + 3 0 /  30/90]~ laminate with 
delaminations at the 90/90 interface 

Figure 8 shows the SERR for [-+-30/ 30/90]~ 

Fig. 8 Strain energy release rates for 130/-30/90]~ 
laminate with free edge delaminations at 90/ 
90 interface. 

laminate with delaminations at the 90/90 inter- 

['ace, shown ill Fig. 7(a). 

The abscissa is the delamination crack length, 

and the ordinate is the SERR normalized by the 

square of the uniform axial strain .~,. The total 

SERR G calculated by Eq. (22) coincides with 

Mode- ] SERR G~obtained by the first equation 

of Eqs. (25). The Mode- ]l and Mode- ]H SERRs 

calculated from Eqs. (25) are zero. The Mode I 

component of SERR obtained by the present 

method is identical to the FEM with the virtual 

crack closure technique, when the delamination 

length is approximately more than the laminate 

thickness and when the delamination length is not 

too long. The SERR obtained flom the FEM 

decreases as the delamination increases across the 

laminate width. 

3.2 [ q 30/--30/90]~ laminate with 
delaminations at the + 30/--30 interfaces 

Figure 9 shows the individual components of 

SERR for [+30/- -30/90] .~  laminate with 
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Fig. 9 Strain energy release rates for E30/--30/90]~ 
laminate with free-edge delaminations at 30/ 
-- 30 interfaces. 

delaminations at the + 3 0 / -  30 interfaces, shown 

in Fig. 7(a). 

The Mode- I , Mode- II, and Mode-$  compo- 

nents of SERR calculated by Eqs. (25) are in well 

agreement with the FEM results, when the 

delamination length is approximately more than 

the laminate thickness and when the delamination 

length is not too long. The mode components of 

SERR obtained from the FEM decrease as the 

delamination almost increases across the laminate 

width. The total SERR calculated by Eq. (22) 

coincides with the FEM result when the 

delamination length is neither too short nor too 

long. 

3.3 [ - + 3 0 / - - 3 0 / 9 0 ] ~  l aminate  with  a sym-  

metr ic  de laminat ions  at the - - 3 0 / 9 0  

in ter face  

Figure I0 shows the individual components of 

SEER for I + 3 0 /  30/90]s laminate with 

delaminations asymmetric located with respect to 

the laminate midplane at the - 3 0 / 9 0  interface, 

shown in Fig. 7(b). 

The Mode I , Mode II, and Mode Ill compo- 

nents of SERR calculated by Eqs. (25) are in well 

agreement with the FEM results, when the 

delamination length is not too long. The mode 

components of SERR obtained from the FEM 

decrease as the delamination increases across the 

Fig. l0 Strain energy release rates for ~30/ 30/90]s 
laminate with free edge delaminations at 

30/90 interface. 

laminate width. The total SERR calculated by 

Eq. (22) coincides with the FEM when the 

delamination length is neither too short nor too 

long. For the case (3), however, the increase of the 

energy release rate is clearly recognized as the 

delamination grows. The results of the energy 

release rate analysis suggest that the behavior of 

the laminate depends on the position of the 

delamination interface. 

3.4 D i scuss ion  

Wang(1984) showed that the SERR increases 

to a maximum value with increasing delamination 

length, beyond which it remains unchanged. He 

defined the delamination length at which this 

transition occurs as a characteristic delamination 

length. When predicting the onset and growth of 

free-edge delaminations, it is becoming generally 

accepted to determine the SERR for a delamina- 

tion of the characteristic length or greater, and 

then to compare the calculated SERR with the 

critical value. The present method provides a 

good estimation of the individual components of 

SERR for the delamination of the characteristic 

length or greater. 

The present method does not need the near 

field information such as the displacement field 

or the distribution of the interlaminar stresses. 

Hence this method is not concerned with the 

oscillatory singularity. And, the analysis provides 
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closed-form expressions for the Mode-  1, Mode 

U, and Mode-m components of SERR. The 

simple nature of the method makes it suitable for 

preliminary design analysis for the delaminations 

of composite laminates. 

4. C o n c l u s i o n s  

Based on the previous sections, the following 

conclusions can be drawn : 

(1) A simple method for determining the mode 

components of the strain energy release rate 

(SERR) of free edge detaminations in composite 

laminates was developed. The method is based oll 

a generalized quasi-three dimensional analysis, 

developed by modifying the classical laminated 

plate theory. The analysis provides closed form 

expressions for the Mode-  1 , Mode [[ , and 

Mode-  Ill components of SERR. 

(2) The individual mode components of 

SERR obtained by the present method are in 

good agreement with the results of a finite element 

analysis using the virtual crack closure technique. 
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